论著获奖 | 已发表文章: [1].Deng, Y., Qian, J., Luo, Q., Ma, H., Ma, L. and Xu, K. (2022), Effects of grain size, solution salinity and pH on the electrical response of oil-bearing carbonate sands [J]. Near Surface Geophysics. https://doi.org/10.1002/nsg.12201(SCI,影响因子:2.033) [2]. Yang Ze, Deng Yaping*, Qian Jiazhong*, Ding Rui, Ma lei. Characterizing temporal behavior of a thermal tracer in porous media by time-lapse electrical resistivity measurements [J]. Hydrogeology Journal. 2021, 29:1173-1188.(SCI,影响因子:3.178) [3] Deng Yaping, Shi Xiaoqing*, Zhang Zhenyu, Sun Yuanyuan, Wu Jichun*, Qian Jiazhong. Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments[J]. Journal of Contaminant Hydrology. 2020, 230: 103603.(SCI, 影响因子IF=3.188) [4] Y. Deng,Revil, A., X. Shi. Complex conductivity of oil-contaminated clayey soil [J]. Journal of Hydrology, 2018, 561:930-942. (SCI, 影响因子:5.722) [5].Deng Y, Shi X, Xu H, et al. Quantitative assessment of electrical resistivity tomography for monitoring DNAPLs migration–Comparison with high-resolution light transmission visualization in laboratory sandbox [J]. Journal of Hydrology, 2017, 544: 254-266. (SCI, 影响因子:5.722) [6].Ya-ping D, Xiao-qing S H I, Ji-chun W U. Applications of hydrogeophysics in characterization of subsurface architecture and contaminant plumes[J]. Journal of Groundwater Science and Engineering, 2016, 4(4): 354-366. [7].邓亚平,张烨,施小清,吴吉春. 非均质裂隙介质中重非水相流体运移[J]. 水科学进展,2015,05:722-730. (EI) [8].邓亚平,郑菲,施小清等. 多孔介质中DNAPLs运移行为研究进展[J]. 南京大学学报(自然科学),2016,52 (3):409-420. (中文核心) [9].Revil, A., Coperey, A., Y. Deng, et al. Complex conductivity of tight sandstones. Geophysics, 2017, 83(2), E55-E74. (SCI, 影响因子:2.391) [10].Revil, A., Coperey, A., Shao, Z., Florsch, N., Fabricius, I. L., & Deng, Y., et al. Complex conductivity of soils. Water Resources Research, 2017, 53(08):7121-7147. (SCI, 影响因子:5.240) [11].Q. Liao, Y. Deng, X. Shi et al. Delineation of contaminant plume for an inorganic contaminated site using electrical resistivity tomography: Comparison with direct-push techniques [J]. Environmental Monitoring and Assessment, 2017. (SCI, 影响因子:1.687) [12].朱建友, 邓亚平, 施小清,等. 高密度电阻率法探测DNAPLs污染的适宜性探讨[J]. 水文地质工程地质, 2017, 44(1):144-151. (中文核心) [13].张烨, 施小清, 邓亚平,等. 结合蒸汽和空气注入修复多孔介质中DNAPL污染物的多目标多相流模拟优化[J]. 水文地质工程地质, 2015, 42(5):000140-148. (中文核心) [14] 康学远, 施小清, 邓亚平, 廖凯华, 吴吉春. 基于EnKF融合地球物理数据刻画含水层非均质性. 水科学进展, 2018, 29(1):40-49. (EI) [15] Kang, X., Shi, X., Deng, Y., Revil, A., Xu, H. and Wu, J. Coupled hydrogeophysical inversion of DNAPL source zone architecture and permeability field in a 3D heterogeneous sandbox by assimilation time-lapse cross-borehole electrical resistivity data via ensemble Kalman filtering. Journal of Hydrology, 2018, 567:149-164. (SCI, 影响因子:5.722) 专利: 钱家忠; 闫永帅; 马海春; 马雷; 骆乾坤; 邓亚平, 一种基于高密度电法的基岩裂隙优势通道的探测方法, 2021-03-30, 中国, CN202110337624.2. 国际学术会议报告: 2017年,美国地球物理联合会秋季年会(AGU),New Orleans,Complex conductivity of oil-contaminated clayey soils,(展板报告) |